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Abstract
A class of quantum superintegrable Hamiltonians defined on a two-dimensional
hyperboloid is considered together with a set of intertwining operators
connecting them. It is shown that such intertwining operators close a su(2, 1)

Lie algebra and determine the Hamiltonians through the Casimir operators. By
means of discrete symmetries a broader set of operators is obtained closing a
so(4, 2) algebra. The physical states corresponding to the discrete spectrum of
bound states as well as the degeneration are characterized in terms of unitary
representations of su(2, 1) and so(4, 2).

PACS numbers: 02.30.Ik, 03.65.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In this work we will consider a quantum superintegrable system living in a two-dimensional
hyperboloid of two sheets. Although this system is well known in the literature [1–6] and can
be dealt with standard procedures [7–9], it will be studied here under a different point of view
based on the properties of intertwining operators (IO), a form of Darboux transformations
[10]. We will see how this approach can give a simple explanation of the main features of this
physical system. The intertwining operators and integrable Hamiltonians have been studied in
previous works [11–14], but we will supply here a thorough non-trivial application by means
of this example. Besides, there are several points of interest for the specific case considered
here because of the non-compact character.

The intertwining operators are first-order differential operators connecting different
Hamiltonians in the same class (called hierarchy) and they are associated with separable
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coordinates of the Hamiltonians. We will obtain just a complete set of such intertwining
operators, in the sense that any of the Hamiltonians of the hierarchy can be expressed in terms
of these operators.

In our case the initial IO’s close an algebraic structure which is the non-compact Lie
algebra su(2, 1) (see [15] for a compact case). In a second step we will get a larger so(4, 2)

Lie algebra of operators. This structure allows us to characterize the discrete spectrum and
the corresponding eigenfunctions of the system by means of (infinite dimensional) irreducible
unitary representations (iur). The construction of such representations, as it is known, is not
so standard as for compact Lie algebras. We will compute the ground state and characterize
the representation space of the wavefunctions which share the same energy. Note that these
systems include also a continuum spectrum, but we will not go into this point here.

The organization of the paper is as follows. Section 2 introduces the superintegrable
Hamiltonians and section 3 shows how to build the IO’s connecting this kind of Hamiltonians.
In section 4 it is seen that these operators close a su(2, 1) algebra. The Hamiltonians are
related to the Casimirs of such an algebra, while the discrete spectrum of the Hamiltonians
is related to unitary representations (iur’s) of su(2, 1). Next, in section 5 a broader class of
IO’s is defined leading to the so(4, 2) Lie algebra, and it is shown how this new structure
helps to understand better the Hamiltonians in the new hierarchies. Finally, some remarks and
conclusions in section 6 will end the paper.

2. Parametrizations of the two-sheet hyperboloid

Let us consider the two-dimensional two-sheet hyperboloid s2
0 + s2

1 − s2
2 = −1, where we

define the following Hamiltonian:

H� = J 2
2 − J 2

1 − J 2
0 − l2

2 − 1
4

s2
2

+
l2
1 − 1

4

s2
1

+
l2
0 − 1

4

s2
0

, (2.1)

where � = (l0, l1, l2) ∈ R
3, and the differential operators

J0 = s1∂2 + s2∂1, J1 = s2∂0 + s0∂2, J2 = s0∂1 − s1∂0, (2.2)

constitute a realization of the so(2, 1) Lie algebra with Lie commutators

[J0, J1] = −J2, [J2, J0] = J1, [J1, J2] = J0.

The generator J2 corresponds to a rotation around the axis s2, while the generators J0 and
J1 give pseudo-rotations (i.e., non-compact rotations) around the axes s0 and s1, respectively.
The Casimir operator

C = J 2
0 + J 2

1 − J 2
2

gives the ‘kinetic’ part of the Hamiltonian.
We can parametrize the hyperbolic surface by means of the ‘analogue’ of the spherical

coordinates

s0 = sinh ξ cos θ, s1 = sinh ξ sin θ, s2 = cosh ξ, (2.3)

where 0 � θ < 2π and 0 � ξ < ∞. In these coordinates, the infinitesimal generators (2.2)
take the following expressions:

J0 = sin θ∂ξ + cos θ coth ξ∂θ , J1 = cos θ∂ξ − sin θ coth ξ∂θ , J2 = ∂θ . (2.4)

It is easy to check that the generators Ji, i = 1, 2, 3, are anti-Hermitian inside the space of
square-integrable functions with the invariant measure dµ(θ, ξ) = sinh ξ dθ dξ . Using the
coordinates (2.3), the Hamiltonian (2.1) has the expression

H� = −∂2
ξ − coth ξ∂ξ − l2

2 − 1
4

cosh2 ξ
+

1

sinh2 ξ

[
−∂2

θ +
l2
1 − 1

4

sin2 θ
+

l2
0 − 1

4

cos2 θ

]
. (2.5)
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Therefore, H� can be separated in the variables ξ and θ . Choosing its eigenfunctions
��,H��� = E��, in the form

��(θ, ξ) = f (θ)g(ξ), (2.6)

we get the separated equations

Hθ
l0,l1

f (θ) ≡
[
−∂2

θ +
l2
1 − 1

4

sin2 θ
+

l2
0 − 1

4

cos2 θ

]
f (θ) = αf (θ) (2.7)

and [
−∂2

ξ − coth ξ∂ξ − l2
2 − 1

4

cosh2 ξ
+

α

sinh2 ξ

]
g(ξ) = Eg(ξ), (2.8)

where α > 0 is a separation constant.

3. A complete set of intertwining operators

The second-order operator at the lhs of (2.7) in the variable θ can be factorized in terms of
first-order operators [16, 17]

Hθ
l0,l1

= A+
l0,l1

A−
l0,l1

+ λl0,l1 ,

being

A±
l0,l1

= ±∂θ − (l0 + 1/2) tan θ + (l1 + 1/2) cot θ, λl0,l1 = (1 + l0 + l1)
2. (3.1)

The Hamiltonian can also be rewritten in terms of the triplet
(
A±

l0−1,l1−1, λl0−1,l1−1

)
Hθ

l0,l1
= A−

l0−1,l1−1A
+
l0−1,l1−1 + λl0−1,l1−1 = A+

l0,l1
A−

l0,l1
+ λl0,l1 . (3.2)

In this way we get a hierarchy of Hamiltonians

. . . , H θ
l0−1,l1−1,H

θ
l0,l1

,H θ
l0+1,l1+1, . . . , H

θ
l0+n,l1+n, . . . (3.3)

satisfying the following recurrence relations:

A−
l0−1,l1−1H

θ
l0−1,l1−1 = Hθ

l0,l1
A−

l0−1,l1−1,

A+
l0−1,l1−1H

θ
l0,l1

= Hθ
l0−1,l1−1A

+
l0−1,l1−1.

Hence, the operators
{
A±

l0+n,l1+n

}
n∈Z

are intertwining operators and they act as transformations
between the eigenfunctions of the Hamiltonians in the hierarchy (3.3),

A−
l0−1,l1−1 : fl0−1,l1−1 → fl0,l1 , A+

l0−1,l1−1 : fl0,l1 → fl0−1,l1−1,

where the subindex refers to the corresponding Hamiltonian. We can define new operators in
terms of A±

l0,l1
, together with a diagonal operator Al0,l1 = (l0 + l1)I, acting in the following

way in the space of eigenfunctions:

Â−fl0,l1 ≡ 1
2A−

l0,l1
fl0,l1 , Â+fl0,l1 ≡ 1

2A+
l0,l1

fl0,l1 , Âfl0,l1 ≡ − 1
2 (l0 + l1)fl0,l1 . (3.4)

It can be shown from (3.2) that {Â−, Â+, Â} satisfy the commutation relations of a su(2) Lie
algebra, i.e.,

[Â−, Â+] = −2Â, [Â, Â±] = ±Â±. (3.5)

The ‘fundamental’ states, f 0
l0,l1

, of the su(2) representations are determined by the relation
Â−f 0

l0,l1
(θ) = 0. They are

f 0
l0,l1

(θ) = N(cos θ)l0+1/2(sin θ)l1+1/2,

3
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where N is a normalization constant. These functions are regular and square-integrable when

l0, l1 � −1/2. (3.6)

Since Âfl0,l1 ≡ − 1
2 (l0 + l1)fl0,l1 , then the label of the j -representation is j = 1

2 (l0 + l1) and the
dimension of the iur will be 2j + 1 = l0 + l1 + 1.

Now, observe that because the IO’s A±
l0,l1

depend only on the θ -variable, they can act also
as IO’s of the total Hamiltonians H� (2.5) and its global eigenfunctions �� (2.6), leaving the
parameter l2 unchanged (in this framework we will use three-fold indexes)

A−
�′ H�′ = H�A

−
�′ , A+

�′H� = H�′A+
�′ ,

where � = (l0, l1, l2) and �′ = (l0 − 1, l1 − 1, l2). In this sense, many of the above relations
can be straightforwardly extended under this global point of view.

3.1. Second set of pseudo-spherical coordinates

A second coordinate set is obtained from the non-compact rotations about the axes s0 and s1,
respectively. In this way we obtain the following parametrization of the hyperboloid:

s0 = cosh ψsinh χ, s1 = sinh ψ, s2 = cosh ψcosh χ. (3.7)

The expressions of the so(2, 1) generators in these coordinates are

J0 = −tanh ψsinh χ∂χ + cosh χ∂ψ, J1 = ∂χ , J2 = sinh χ∂ψ − tanh ψcosh χ∂χ ,

and the explicit expression of the Hamiltonian (2.1) is now

H� = −∂2
ψ − tanh ψ∂ψ +

l2
1 − 1

4

sinh2 ψ
+

1

cosh2 ψ

[
−∂2

χ +
l2
0 − 1

4

sinh2 χ
− l2

2 − 1
4

cosh2 χ

]
.

This Hamiltonian can be separated in the variables ψ and χ considering the eigenfunctions
� of H� (H�� = E�) as �(χ,ψ) = f (χ)g(ψ). We obtain the two following (separated)
equations:

H
χ

l0,l2
f (χ) ≡

[
−∂2

χ +
l2
0 − 1

4

sinh2 χ
− l2

2 − 1
4

cosh2 χ

]
f (χ) = αf (χ),

(3.8)[
−∂2

ψ − tanh ψ∂ψ +
l2
1 − 1

4

sinh2 ψ
+

α

cosh2 ψ

]
g(ψ) = Eg(ψ),

with a separation constant α. The second-order operator in the variable χ at the lhs of (3.8)
can be factorized as a product of first-order operators

H
χ

l0,l2
= B+

l0,l2
B−

l0,l2
+ λl0,l2 = B−

l0−1,l2−1B
+
l0−1,l2−1 + λl0−1,l2−1, (3.9)

being

B±
l0,l2

= ±∂χ + (l2 + 1/2) tanh χ + (l0 + 1/2)coth χ, λl0,l2 = −(1 + l0 + l2)
2. (3.10)

In this case the intertwining relations take the form

B−
l0−1,l2−1H

χ

l0−1,l2−1 = H
χ

l0,l2
B−

l0−1,l2−1,

B+
l0−1,l2−1H

χ

l0,l2
= H

χ

l0−1,l2−1B
+
l0−1,l2−1,

and imply that these operators B± connect eigenfunctions in the following way:

B−
l0−1,l2−1 : fl0−1,l2−1 → fl0,l2 , B+

l0−1,l2−1 : fl0,l2 → fl0−1,l2−1.

4
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The operators B±
l0,l2

can be expressed in terms of ξ and θ using relations (2.3) and (3.7)

B±
l0,l2

= ±J1 + (l2 + 1/2) tanh ξ cos θ + (l0 + 1/2) coth ξ sec θ,

where J1 is given by (2.4). We define new free-index operators in the following way:

B̂−fl0,l2 ≡ 1
2B−

l0,l2
fl0,l2 , B̂+fl0,l2 ≡ 1

2B+
l0,l2

fl0,l2 , B̂fl0,l2 ≡ − 1
2 (l0 + l2)fl0,l2 ,

and, having in mind the expressions (3.9) and (3.10), we can prove that they close the su(1, 1)

Lie algebra

[B̂−, B̂+] = 2B̂, [B̂, B̂±] = ±B̂±. (3.11)

Since the Lie algebra su(1, 1) is non-compact, its iur’s are infinite dimensional. In particular,
we will be interested in the discrete series, that is, in those having a fundamental state
annihilated by the lowering operator, i.e., B−f 0

l0,l2
= 0. The explicit expression of these states

is

f 0
l0,l2

(χ) = N(cosh χ)l2+1/2(sinh χ)l0+1/2, (3.12)

where N is a normalization constant. In order to have a regular and square-integrable function
we must have

l0 � −1/2, −k1 ≡ l0 + l2 < −1. (3.13)

Since B̂f 0
l0,l2

= − 1
2 (l0 + l2)f

0
l0,l2

, we can say that the lowest weight of this unitary su(1, 1)

infinite representation is j ′
1 = k1/2 > 1/2.

The IO’s B̂± can be considered also as intertwining operators of the Hamiltonians H�

linking their eigenfunctions ��, similarly to the IO’s Â± described before (in this situation we
will also use three-fold indexes but now with l1 remaining unchanged).

3.2. Third set of pseudo-spherical coordinates

A third set of coordinates is obtained from the non-compact rotations about the axes s1 and s0,
respectively. They give rise to the parametrization

s0 = sinh φ, s1 = cosh φ sinh β, s2 = cosh φ cosh β, (3.14)

and the generators have the expressions

J0 = ∂β, J1 = cosh β∂φ − tanh φ sinh β∂β, J2 = −sinh β∂φ + tanh φ cosh β∂β.

Now, the Hamiltonian takes the form

H� = −∂2
φ − tanh φ∂φ +

l2
0 − 1

4

sinh2 φ
+

1

cosh2 φ

[
−∂2

β +
l2
1 − 1

4

sinh2 β
− l2

2 − 1
4

cosh2 β

]
,

and can be separated in the variables φ, β in terms of its eigenfunctions � (H�� = E�) such
that �(β, φ) = f (β)g(φ) in the following way:

H
β

l1,l2
f (β) ≡

[
−∂2

β +
l2
1 − 1

4

sinh2 β
− l2

2 − 1
4

cosh2 β

]
f (β) = αf (β),

(3.15)[
−∂2

φ − tanh φ∂φ +
l2
0 − 1

4

sinh2 φ
+

α

cosh2 φ

]
g(φ) = Eg(φ),

where α is a separation constant. The second-order operator in β at the lhs of expression
(3.15) can be factorized as a product of first-order operators

H
β

l1,l2
= C+

l1,l2
C−

l1,l2
+ λl1,l2 = C−

l1+1,l2−1C
+
l1+1,l2−1 + λl1+1,l2−1,

5
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being

C±
l1,l2

= ±∂β + (l2 + 1/2) tanh β + (−l1 + 1/2) coth β, λl1,l2 = −(1 − l1 + l2)
2.

These operators give rise to the intertwining relations

C+
l1+1,l2−1H

β

l1,l2
= H

β

l1+1,l2−1C
+
l1+1,l2−1

C−
l1+1,l2−1H

β

l1+1,l2−1 = H
β

l1,l2
C−

l1+1,l2−1,

which imply the connection among eigenfunctions

C−
l1+1,l2−1 : fl1+1,l2−1 → fl1,l2 , C+

l1+1,l2−1 : fl1,l2 → fl1+1,l2−1.

In this case C±
l1,l2

can also be expressed in terms of ξ and θ using relations (2.3) and (3.14)

C±
l1,l2

= ±J0 + (l2 + 1/2) tanh ξ sin θ + (−l1 + 1/2) coth ξ csc θ,

where J0 is given by (2.4). Now, the new operators are defined as

Ĉ−fl1,l2 ≡ 1
2C−

l1,l2
fl1,l2 , Ĉ+fl1,l2 ≡ 1

2C+
l1,l2

fl1,l2 , Ĉfl1,l2 ≡ − 1
2 (l2 − l1)fl1,l2 .

and satisfy the commutation relations of the su(1, 1) algebra

[Ĉ−, Ĉ+] = 2Ĉ, [Ĉ, Ĉ±] = ±Ĉ±. (3.16)

The fundamental state for the su(1, 1) representation, in this case, given by Ĉ−f 0
l1,l2

= 0, has
the expression

f 0
l1,l2

(β) = N(cosh β)l2+1/2(sinh β)−l1+1/2, (3.17)

where N is a normalization constant. In order to get a iur from this function, we impose it to
be regular and normalizable, therefore

l1 � 1/2, −k2 ≡ l2 − l1 < −1. (3.18)

Since Ĉf 0
l1,l2

= − 1
2 (l2 − l1)f

0
l1,l2

the lowest weight of the iur is given by j ′
2 = k2/2 > 1/2.

As in the previous cases, we can consider the IO’s C± as connecting global Hamiltonians
H� and their eigenfunctions, having in mind that now the parameter l0 is unaltered.

4. Algebraic structure of the intertwining operators

If we consider together all the IO’s {Â±, Â, B̂±, B̂, Ĉ±, Ĉ} that have appeared in section 3,
then, we find that they close the Lie algebra su(2, 1) since they satisfy, besides (3.5), (3.11),
(3.16), the following commutation relations:

[Â+, B̂+] = 0 [Â−, B̂−] = 0 [Â+, B̂−] = −Ĉ− [Â−, B̂+] = Ĉ+

[Ĉ+, B̂+] = 0 [Ĉ−, B̂−] = 0 [Ĉ+, Â+] = −B̂+ [Ĉ−, Â−] = B̂−

[Ĉ+, B̂−] = −Â− [Ĉ−, B̂+] = Â+ [Ĉ+, Â−] = 0 [Ĉ−, Â+] = 0

[Â, B̂+] = 1
2 B̂+ [Â, B̂−] = − 1

2 B̂− [B̂, Â+] = 1
2 Â+ [B̂, Â−] = − 1

2 Â−

[Ĉ, B̂+] = 1
2 B̂+ [Ĉ, B̂−] = − 1

2 B̂− [Ĉ, Â+] = − 1
2 Â+ [Ĉ, Â−] = 1

2 Â−

[Â, Ĉ−] = 1
2 Ĉ− [Â, Ĉ+] = − 1

2 Ĉ+ [B̂, Ĉ−] = − 1
2 Ĉ− [B̂, Ĉ+] = 1

2 Ĉ+

[Â, B̂] = 0 [Â, Ĉ] = 0 [B̂, Ĉ] = 0.

(4.1)

6
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Obviously su(2, 1) includes as subalgebras the Lie algebras su(2) and su(1, 1) defined in
section 3. The second-order Casimir operator of su(2, 1) can be written as follows:

C = Â+Â− − B̂+B̂− − Ĉ+Ĉ− + 2
3 (Â2 + B̂2 + Ĉ2) − (Â + B̂ + Ĉ). (4.2)

It is worth noting that in our differential realization we have Â − B̂ + Ĉ = 0, and that there is
another generator

C′ = l1 + l2 − l0 (4.3)

commuting with the rest of generators. Hence, adding this new generator C′ to the other ones
we get the Lie algebra u(2, 1).

The eigenfunctions of the Hamiltonians H� that have the same energy support unitary
representations of su(2, 1) characterized by a value of C and other of C′. In fact, we can show
that

H� = −4C + 1
3C

′2 − 15
4 . (4.4)

These representations can be obtained, as usual, starting with a fundamental state
simultaneously annihilated by the lowering operators Â−, Ĉ− and B̂−

A−
� �0

� = C−
� �0

� = B−
� �0

� = 0. (4.5)

Solving equations (4.5) we find

�0
�(ξ, θ) = N(cos θ)l0+1/2(sin θ)1/2(cosh ξ)l2+1/2(sinh ξ)l0+1, (4.6)

where � = (l0, 0, l2). From the inequalities (3.6) and (3.18) the parameters of �0
� must satisfy

(l0 + l2) < −1 and l0 � −1/2. In this particular case to guarantee the normalization of �0
�

using the invariant measure we must impose (l0 + l2) < −5/2. Thus, the above state supports
also iur’s of the subalgebras su(2) (generated by Â±) with the weight j = l0/2 and su(1, 1)

(generated by Ĉ±) with j ′
2 = −l2/2.

The energies of the fundamental states of the form (4.6) are obtained by applying H� as
given in (4.4) taking into account with the expressions for the Casimir operators (4.2) and
(4.3),

H��
0
� = −(l0 + l2 + 3/2)(l0 + l2 + 5/2)�0

� ≡ E0
��

0
�. (4.7)

From �0
� we can get the rest of eigenfunctions in the su(2, 1) representation using the raising

operators Â+, B̂+ and Ĉ+, all of them sharing the same energy eigenvalue E0
� (4.7).

Since the expression (4.7) for E0
� depends on l0 + l2, states, in the family of iur’s derived

from fundamental states (4.6) such that have the same value of l0 + l2, will also have the same
energy eigenvalue. It is worth remarking that the energy in (4.7) corresponding to bound states
is negative, which is consistent with the expressions (2.5) and (2.8) for the Hamiltonians, and
that the set of such bound states for each Hamiltonian is finite.

In figure 1, by means of an example, we represent the states of some iur’s by points
(l0, l1, l2) ∈ R

3 linked to the ground state �0
�, represented by the point (l0, 0, l2), through the

raising operators Â+, Ĉ+. The points belonging to a iur are in a two-dimensional (2D) plane
corresponding to the particular value of C′, and other iur’s are described by points in parallel
2D planes. These parallel planes are closed inside a tetrahedral unbounded pyramid whose
basis extends towards l2 → −∞.

As in the case of su(3) representations [15], in the above su(2, 1) iur’s we have some
points (in the parameter space) which are degenerated, that is, they correspond to an eigenspace
whose dimension is greater than one. For example, let us consider first the representation based
on the fundamental state �0

� with values � = (0, 0,−3). From this state we can build a iur
made of points in a triangle, where each point represents a non-degenerate one-dimensional
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Figure 1. The states of iur’s of su(2, 1) represented by points in the three dark planes corresponding
to �0

� with � = (0, 0, −3), � = (1, 0,−4) and � = (2, 0, −5). All of them share the same energy
E0

� .
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Figure 2. Plot of the orthogonal normalized eigenfunctions �(θ, ξ), 0 < θ < π/2, 0 < ξ < ∞,
of H�1 , for �1 = (0, 0,−5) corresponding to the ground state (left) and two independent states
generating the eigenspace of the second (and last) excited energy level.

(1D) eigenspace. Now, consider the iur corresponding to the ground state with �0 = (1, 0,−4),
which has eigenstates with the same energy E0

�1
= −(−3 + 3/2)(−3 + 5/2) as the previous

one (they have the same value of l0 + l2 = −3). Now the eigenstates corresponding to
�1 = (0, 0,−5), inside this representation, can be obtained in two ways

��1 = Ĉ+Â+��0 , �̃�1 = Â+Ĉ+��0 . (4.8)

It can be shown that these states are independent and that they span the 2D eigenspace of the
corresponding Hamiltonian H�1 for that eigenvalue.

Remark that the ground state for the Hamiltonian H�1 , �1 = (0, 0,−5), is given by the
wavefunction (4.6) and its ground energy is E0

�1
= −(−5 + 3/2)(−5 + 5/2). The plot of the

ground wavefunction and two independent excited wavefunctions are shown in figure 2.
Following the same pattern the degeneration of higher excited levels in the discrete

spectrum can be obtained: the n excited level, when it exists, has associated an eigenspace
with dimension n.
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5. The complete symmetry algebra so(4, 2)

As it is explicit from its expression (2.1) the Hamiltonian H� is invariant under reflections

I0 : (l0, l1, l2) → (−l0, l1, l2)

I1 : (l0, l1, l2) → (l0,−l1, l2) (5.1)

I2 : (l0, l1, l2) → (l0, l1,−l2).

These operators can generate, by means of conjugation, other sets of intertwining operators
from the ones already defined. For instance,

I0 : {Â±, Â} → {Ã± = I0Â
±I0, Ã = I0ÂI0} (5.2)

where, from (3.1) we get

Ã±
l0,l1

= ±∂θ − (−l0 + 1/2) tan θ + (l1 + 1/2) cot θ, λ̃l0,l1 = (1 − l0 + l1)
2, (5.3)

such that

Ã−
l0,l1

: fl0,l1 → fl0−1,l1+1, Ã+
l0,l1

: fl0−1,l1+1 → fl0,l1 .

Thus, we can define the operators Ã± as in (3.4) that together with Ãfl0,l1 ≡ − 1
2 (−l0 + l1)fl0,l1

close a second s̃u(2).
Other sets of operators {B̃±, B̃} and {C̃±, C̃}, closing s̃u(1, 1) Lie algebras, can also be

defined with the help of these reflections in the following way (the choice is non-unique):

I0 : {Â±, Â; B̂±, B̂; Ĉ±, Ĉ} → {Ã±, Ã; B̃±, B̃;C±, C}
I1 : {Â±, Â; B̂±, B̂; Ĉ±, Ĉ} → {Ã∓,−Ã;B±, B; C̃±, C̃} (5.4)

I2 : {Â±, Â; B̂±, B̂; Ĉ±, Ĉ} → {A±, A; B̃∓,−B̃;−C̃∓,−C̃}.
The whole set of the operators

{Â±, Ã±, B̂±, B̃±, Ĉ±, C̃±, L0, L1, L2}, (5.5)

where the diagonal operators Li are defined as

Li� = li� (5.6)

generate an o(4, 2) Lie algebra of rank three with commutation rules that can be easily derived
from those of su(2, 1) given in (4.1) and the action of the reflections (5.4). These generators
link eigenstates of the Hamiltonians H� with the same eigenvalue. However, the generator in
the centre of o(4, 2) does not play here any role, so we can restrict henceforth to the so(4, 2)

Lie algebra.
Now, consider a fundamental state 0

� for the so(4, 2) algebra annihilated by the lowering
operators,

A−
� 0

� = Ã−
� 0

� = C−
� 0

� = C̃−
� 0

� = B−
� 0

� = B̃−
� 0

� = 0. (5.7)

This state should be a particular case of (4.6) invariant also under the l0-reflection

�0
�(ξ, θ) = N(cos θ)1/2(sin θ)1/2(cosh ξ)l2+1/2 sinh ξ, (5.8)

thus, it has the label � = (0, 0, l2), where l2 < −5/2. This point in the parameter space, for
the example of figure 1, corresponds to the top vertex of the pyramid, from which all the other
points displayed in the figure can be obtained with the help of raising operators. Such points
correspond to a iur of the so(4, 2) algebra, including the series of iur’s of the su(2, 1) algebra
mentioned in the previous section.

Fixed the iur corresponding to � = (0, 0, l2) such that −7/2 � l2 < −5/2, then, the
points on the surface of the associated pyramid in the parameter space correspond to non-
degenerated ground levels of their respective Hamiltonians. This ‘top’ pyramid includes other
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Figure 3. It is shown two pyramids associated with the same iur of so(4, 2). The exterior with
vertex (0, 0,−3) has points on its exterior faces which represent non-degenerated levels. The inner
one has exterior faces corresponding to first excited double-degenerated levels.

‘inner’ pyramids, see figure 3, with vertexes �n = (0, 0, l2 − 2n). Each point on the surface
of an inner pyramid associated with �n represents an n-excited level (n + 1)-fold degenerated
of the iur associated with �.

Finally, we must remark that the same set of Hamiltonians and eigenstates can be described
by ‘dual’ representations of so(4, 2) (or su(2, 1)) by means of inverted pyramids with positive
values of l2 fixing the inverted vertex.

6. Concluding remarks

In this work we have built a set of intertwining operators for a superintegrable system defined
on a two-sheet hyperboloid and we have found that they close a non-compact su(2, 1) Lie
algebra structure. By using the reflection operators of the system we have implemented these
IO’s obtaining a so(4, 2) algebra. These IO’s lead to hierarchies of Hamiltonians described by
points on planes or in the 3D space, corresponding to the rank of the respective Lie algebra.

We have shown how these IO’s can be very helpful in the characterization of the
physical system by selecting separable coordinates, determining the eigenvalues and building
eigenfunctions. We have also displayed the relation of eigenstates and eigenvalues with unitary
representations of the su(2, 1) and so(4, 2) Lie algebras. In particular we have studied the
degeneration problem as well as the number of bound states. Notice that such a detailed
study of a ‘non-compact’ superintegrable system has not been realized until now, to our
knowledge.

We have restricted to iur’s, but a wider analysis can be done for hierarchies associated
with representations with a non well-defined unitary character.

The IO’s can also be used to find the second-order integrals of motion for a Hamiltonian
H� and their algebraic relations, which is the usual approach to (super) integrable systems.
However, we see that it is much easier to deal directly with the IO’s, which are more elementary
and simpler, than with constants of motion.
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Our program in the near future is the application of this method to wider situations.
Besides, in principle, we can also adapt the method to classical versions of such systems.
On this aspect we must remark that some symmetry procedures usually considered only for
quantum systems can be extended in an appropriate way to classical ones [18].
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